Question
Ram needs to travel from point A to point B. If he
travels at a speed of 24 km/h, he arrives 2.5 hours later than expected. On the other hand, if he increases his speed to 40 km/h, he arrives 30 minutes ahead of schedule. Can you determine the distance between point A and point B?Solution
Let the distance between points 'A' and 'B' = 'd' km Let the usual time taken to travel from point 'A' to point 'B' be 't' hours Then, (d/24) = t + 2.5 Or, t = (d/24) - (5/2) And, (d/40) = t - (30/60) Or, t = (d/40) + (1/2) Or, {(d - 60)/24} = {(d + 20)/40} Or, {(5d - 300)/120} = {(3d + 60)/120} Or, 5d = 3d + 360 So, d = 360 ÷ 2 = 180 Therefore, distance between points 'A' and 'B' = 180 km
Identify the logic of the below given series and given answer.
Series I :: 81, 89, 116, 241, (A), 1915
Series II :: (B), 204, 208, 4...
18Â Â Â Â Â Â Â Â Â Â 434Â Â Â Â Â Â Â Â 642Â Â Â Â Â Â Â Â 746Â Â Â Â Â Â Â Â 798Â Â Â Â Â Â Â Â ?
...10, 22, 46, ?, 130, 190
12, 20, 36, ?, 132, 260
8Â Â Â Â 20Â Â Â Â 36Â Â Â Â Â 56Â Â Â Â Â 80Â Â Â Â ?
If 152,   242,    x ,  332,   404,    314,
then find the value of (2x – 1)?
...21, 22, 48, 153, 628, ?
30Â Â Â Â Â Â 15Â Â Â Â Â Â Â 15Â Â Â Â Â Â Â 30 Â Â Â Â Â Â Â 120Â Â Â Â Â Â Â ?
...48Â Â Â Â 61 Â Â Â Â 76 Â Â Â Â 94Â Â Â Â 116 Â Â Â Â Â ?
If 4 2 x 1.5 0.5
Then, 1/3 x + 2.5 = ?