Question
If the polynomial (2x3 + ax2 Â +
3x-5) and (x3 + ax² - 2x + a) leave the same remainder when divided by (x - 2), find the remainder.Solution
To find the remainder when the polynomials (2x³ + ax² + 3x - 5) and (x3+x²-2x+a) are divided by (x - 2): 1. Evaluate the polynomials at x – 2 =0 x=2 For P(x) = 2x³ + ax2 + 3x – 5, P (2) = 2(23) +a (22) +3(2)-5 =16+4a+6-5 = 17 + 4a For Q(x) = (x3 +x²-2x+a) Q (2) =23+22 - 2(2) +a =8+4-4+a =8+a Set the remainders equal- 17+4a=8+ a Then- 3a =-9 a = -3 put a =-3 in Q (2) =8+(-3) =5
The radius of base of a solid cylinder is 7 cm and its height is 21 cm. It is melted and converted into small bullets. Each bullet is of same size. Eac...
Consider two concentric circles having radii 17 cm and 15 cm. What is the length (in cm) of the chord, of the bigger circle, which is a tangent to the s...
Find the area of triangle having sides 9 m, 40 m, and 41 m.
What will be circumradius of an equilateral triangle of side 6 cm?
In a trapezium, the lengths of the parallel sides are 18 cm and 24 cm, and the height is 12 cm. A circle is inscribed in the trapezium. Find the radius ...
In a right-angled triangle, the hypotenuse is 25 cm, and one of the sides is 20 cm. Find the radius of the circle inscribed in the triangle.
Let G be the centroid of the equilateral triangle ABC of perimeter 24 cm. Then the length of AG is
In a line PQ, is drawn parallel to BC, points P, Q being on AB and AC respectively. If AB = 3 AP, then what is the ratio of the area of t...
In ∆ABC , G is the centroid , AB = 5 cm, BC= 6 cm and AC = 7 cm , find GD, where D is the mid-point of BC?
If in a ΔABC, the external angle bisector of angle A, meets BC when extended at a point D, BD = 6cm , BC = 4 cm then what is AB:AC ?