Question
The sum of the present ages of 'P' and 'R' is 70 years.
'y' years ago from now, the age of 'R' was 40% more than that of 'P'. If '2y' years hence from now, the age of 'P' will be 20% less than that of 'R', determine the value of 'y'.Solution
Let the present age of R be 'x' years and present age of P be '70 - x' ATQ; (x - y) = 1.4 × (70 - x - y) Or, x - y = 98 - 1.4x - 1.4y Or, 2.4x + 0.4y = 98 Or, 6x + y = 245 So, y = 245 - 6x........ (I) Also, (x + 2y) × 0.8 = (70 - x + 2y) Or, 0.8x + 1.6y = 70 - x + 2y Or, 1.8x - 0.4y = 70 Or, y = 4.5x - 175 ........ (II) Using equation (I) and (II) , we have; 245 - 6x = 4.5x - 175 Or, 420 = 10.5x So, x = 40 So, y = 245 - (40 × 6) = 5
Find the wrong number in the given number series.
28, 40, 63, 98, 147, 224
Find the wrong number in the given number series.
21, 31, 11, 41, 1, 61- Find the wrong number in the given number series.
7, 11, 20, 45, 94, 194 2824Â Â Â Â 2314Â Â Â Â Â 1973Â Â Â Â 1759Â Â Â Â 1634Â Â Â Â 1574
Find the wrong number in the given number series.
32, 50, 72, 98, 128, 160
- Find the wrong number in the given number series.
118, 150, 178, 206, 238, 266 9Â Â Â Â Â Â Â Â Â Â Â Â Â 17Â Â Â Â Â Â Â Â Â Â 53Â Â Â Â Â Â Â Â Â Â 103Â Â Â Â Â Â Â Â 310Â Â Â Â Â Â Â Â 619
...Find the wrong number in the given number series.
3, 7, 22, 89, 445, 2677Find the wrong number in the given number series.
88, 110, 148, 198, 275, 396
120, 136, 111, 147, 93, 162, 81