Question
I: x² - 10x + 21 = 0  II: 4y² - 16y + 15 =
0 In each of the following question, two equations are given. You have to solve both the equations to find the relation between x and y.Solution
From equation 1: x² - 10x + 21 = 0 Factorizing: (x - 7)(x - 3) = 0 So, x = 7 or x = 3. From equation 2: 4y² - 16y + 15 = 0 Dividing by 4: y² - 4y + 3.75 = 0 Using the quadratic formula: y = [4 ± √(16 - 15)] / 2 y = [4 ± 1] / 2 So, y = 2.5 or y = 1.5. Comparing x and y: • x = 7, y = 2.5, x > y • x = 7, y = 1.5, x > y • x = 3, y = 2.5, x > y • x = 3, y = 1.5, x > y
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° If √3 tan 2θ – 3 = 0, then find the value of tanθ secθ – cosθ where 0 < θ < 90°
If (cos A - sin A) = √2 cos (90° - A), then find the value of cot A.


If tan 3.5θ x tan 6.5θ = 1 then the value of tan 5θ is
Find the maximum value of 14 sin A + 24 cos A.

- If cos θ = (4x² – 1)/(1 + 4x²) then find the value of sin q.
The minimum value of 9 cos2 θ + 36 sec2 θ isÂ