Question
The combined income of 'X' and 'Y' is Rs. 1,50,000. 'X'
spends 60% of his income, while 'Y' spends 70% of her income, such that the savings of 'Y' are Rs. 10,000 more than that of 'X'. If the income of 'Z' is 20% less than the average savings of 'X' and 'Y' together, then find the savings of 'Z', given that 'Z' saves 25% of his income.Solution
Let the income of 'Y' be Rs. 'y'. Therefore, income of 'X' = Rs. (150000 - y). Savings of 'X' = 0.4 × (150000 - y) = Rs. (60000 - 0.4y). Savings of 'Y' = Rs. '0.3y'. According to the question, 60000 - 0.4y = 0.3y - 10000 Or, 0.7y = 70000 Or, y = 100000 Savings of 'X' = 60000 - 0.4 * 100000 = 20000 Savings of 'Y' = 30000 Therefore, income of 'Z' = {20000 + 30000} ÷ 2 * 0.8 = 20000 Savings of 'Z' = 0.25 * 20000 = Rs. 5,000
2Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 4Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 5Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 19Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 70...
6000 3002 1503 ? 378.75 191.375 97.6875
...If  204    196       223   x  284
Then, what is the average of the numbers of the above series?
...8   24    12    ?   18     54
3 ? 7 16 71 346
...104   106   110   113   ?   126
12, 18, 28, 42, 52, ?
18Â Â Â Â Â Â Â Â Â Â Â Â 29 Â Â Â Â Â Â Â Â Â Â Â Â Â Â 51 Â Â Â Â Â Â Â Â 84 Â Â Â Â Â Â Â Â 128 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 182
5, 8, 17, ?, 37, 48
(32.03 + 111.98) ÷ 18.211 = 89.9 – 20.23% of ?