Question
What is the highest possible sum of (p + q) if the
number '4p679q3' is divisible by 12?Solution
ATQ,
A number is divisible by 12 if it is divisible by both 3 and 4.
A number is divisible by 4 when the last two digits of the number are divisible by 4.
'q3' is divisible by 4 when 'q' = 0, 2, 4, 6, or 8.
Since we have to find the maximum value, so 'q' = 8.
A number is divisible by 3 when the sum of its digits is divisible by 3.
So, (4 + p + 6 + 7 + 9 + 8 + 3) = (37 + p) must be divisible by 3.
So, 'p' = 2, 5, or 8.
Since we have to find the maximum value, so 'p' = 8.
Therefore, required value = 8 + 8 = 16 .
2Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 4Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 5Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 19Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 70...
6000 3002 1503 ? 378.75 191.375 97.6875
...If  204    196       223   x  284
Then, what is the average of the numbers of the above series?
...8   24    12    ?   18     54
3 ? 7 16 71 346
...104   106   110   113   ?   126
12, 18, 28, 42, 52, ?
18Â Â Â Â Â Â Â Â Â Â Â Â 29 Â Â Â Â Â Â Â Â Â Â Â Â Â Â 51 Â Â Â Â Â Â Â Â 84 Â Â Â Â Â Â Â Â 128 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 182
5, 8, 17, ?, 37, 48
(32.03 + 111.98) ÷ 18.211 = 89.9 – 20.23% of ?