Question
Find the lateral surface area of a pyramid with a
rectangular base measuring 12 meters by 8 meters and a slant height of 18 meters.Solution
Area of pyramid = (1/2) X P X L, where 'P' is the perimeter of base and 'L' is the slant height
Therefore, required area = (1/2) X 2 X (12 + 8) X 18 = 360 m 2
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° If √3 tan 2θ – 3 = 0, then find the value of tanθ secθ – cosθ where 0 < θ < 90°
If (cos A - sin A) = √2 cos (90° - A), then find the value of cot A.


If tan 3.5θ x tan 6.5θ = 1 then the value of tan 5θ is
Find the maximum value of 14 sin A + 24 cos A.

- If cos θ = (4x² – 1)/(1 + 4x²) then find the value of sin q.
The minimum value of 9 cos2 θ + 36 sec2 θ isÂ