Question
The circumference of two circles are 132 cm and 88 cm
respectively. What is the difference between the area of the larger circle and the smaller circle?Solution
Circumference of larger circle = 2πr 132 = 2 × 22/7 × r r = (132 × 7)/(22 × 2) = 21 cm. Area of a larger circle = πr² = 22/7 × 21 × 21 = 1386 cm. Circumference of smaller circle = 2πr 88 = 2 × 22/7 × r r = (88 × 7)/(22 ×2) = 14 cm. Area of a smaller circle = πr² = 22/7 × 14 × 14 = 616 cm. ∴ Required difference = 1386 – 616 = 770 cm.
If tan θ + cot θ = 2 where 0 < θ < 90 ; find the value of tan30 θ + cot 29 θ.
The Value of (sin38Ëš)/(cos52Ëš) + (cos12Ëš)/(sin78Ëš) - 4cos²60Ëš is
If x = (sin 30 ° + cos 30 ° )/sec 60 ° , then find the value of 4x.
Find the simplified value of:
(tan 40 º  + tan 20 º )/(1 - tan 40 º tan 20 º)
If sinAo = (√3/2), then find the value of (sin245o + cos230o) × A ÷ 5 given that 0 < A < 90...
If 2ycosθ = x sinθ and 2xsecθ – ycosecθ = 3, then x 2 + 4y 2 = ?
If sin x + cos x = √2 sin x, then the value of sin x - cos x is:
If 2 sec 3x = 4, then the value of x:
The value of (sin 60 º cos 30 º - cos 60 º sin 30 º)  is equal to:
- Simplify the following trigonometric expression:
11 sin 42° sec 48° − 7 tan 37° tan 53°