If x + 1/x = 5 then find out the value of x⁵ + 1/(x⁵)?
If `x + 1/x` = 5 Then `x^2+ 1/x^2` =52– 2 = 23 and `x^3+1/x^3` =53 - 3 × 5 = 125 – 15 = 110 so `x^5+ 1/x^5` = (`x^2+ 1/x^2` ) (`x^3+1/x^3` ) - (`x + 1/x` ) `x^5+ 1/x^5` = (23 × 110) - (5) = 2530 - 5 = 2525