Question
Statements:        Q # R,    R @ S,  Â
S @ T,   T + N  Conclusions:       I. R $ T       II. Q + S        III. R % T In these questions the symbols @, %, # ,+ and $ are used with different meanings as follows: ‘A @ B’ means ‘ A is not greater than B’. ‘A % B’ means ‘A is neither greater than nor equal to B’. ‘A #  B’ means ‘A is not smaller than B’. ‘A + B’ means ‘A is neither smaller than nor equal to B’.  ‘A $ B’ means ‘A is neither greater than nor smaller than B’ Now in each of the following questions assuming the given statements to be true, find out which of the conclusions I, II and III given below them is/ are definitely true and mark your answer accordingly.Solution
Decoding: Statements:     Q ≥ R,    R ≤ S,     S ≤ T,     T > N Conclusions:       I. R = T       II. Q > S      III. R < T Q ≥ R ≤ S ≤ T > N ∴ R ≤ T . Either Conclusion I or Conclusion III will follow.  Q ≥ R ≤ S ≤ T > N ∴ No relationship can be establish between Q and S.
- Find the radius of the incircle of an equilateral triangle whose height is given to be 3√3 cm.
The corresponding medians of two similar triangles are 12 cm and 15 cm. If the area of the first triangle is 288 cm, then find the area of the second tr...
A triangle and a parallelogram have the same base 42 cm and the same area. If the height of the parallelogram is 14 cm, then find the length of the alti...
The corresponding medians of two similar triangles are 16 cm and 20 cm. If the area of the first triangle is 288 cm, then find the area of the second tr...
- Determine the perpendicular drawn from a vertex to the opposite side in an equilateral triangle with side length 8√3 cm.
- Determine the inradius of an equilateral triangle if its height is 6√3 cm.
Find the altitude of an equilateral triangle whose side is 8√3 cm.
In a triangle ABC, AD is the altitude from A to BC. If AD = 12 cm, AB = 13 cm, and AC = 14 cm, find the length of BC.
If two triangles EFG and UVW are congruent, then which of the following statement(s) is/are true?
I. EF = UV
II. ∠FEG = ∠UVW
- In triangle DEF, GH is drawn parallel to side EF. If DG = 9 cm, GE = 3 cm and DH = 6 cm, find DF.