Question
If cosec2A = (sin60o +
tan45o X sec245o), then find the value of sin2A.Solution
cosec2A = (sin60o + tan45o X sec245o),
coec2A = {(√3/2) + 1 X (√2)2}
cosec2A = {(√3 + 4)/2}
Since, sinA = (1/cosecA)
sin2A = [2/(√3 + 4)]
Rationalising by multiplying numerator and denominator by (4 - √3), we get= {2(4 - √3)/13}
If tan A =
, find the va...
tan 20˚ x tan 23˚ x tan 67˚ x tan 70˚ = ?
- Simplify the following trigonometric expression:
sin 2A + sin 2B sin2 4˚ + sin2 6˚ + sin2 8˚ + sin2 10˚ + ……… + sin2 86˚ =?
- cosx/(1 – sinx) + cosx/(1+ sinx) = 4, 0 o < x < 90 o , then the value of (tanx + cosecx)
If sin 23° = `12/13` , then tan 67° = ?
...If cot A = 12/5, then the value of (sin A + cos A) × sec A is ________.
cot 4˚ x cot 47˚ x cot 42.3˚ x cot 43˚ x cot 47.7˚ x cot 86˚= ?