Question
If cosec (2A + B) = (2/√3) and cosec (A + B) = √2,
then determine the value of (4A - B).Solution
We have, cosec (2A + B) = (2/√3)
Or, cosec (2A + B) = cosec 60°
Or, 2A + B = 60° -------- (I)
And, cosec (A + B) = √2
Or, cosec (A + B) = cosec 45°
Or, A + B = 45° ------- (II)
On subtracting equation (II) from (I) ,
We have, (2A + B) - (A + B) = 60° - 45°
So, 'A' = 15°
Put the value of 'A' = 15° in equation (1) ,
So, 2(15°) + B = 60°
Or, 30° + B = 60°
So, 'B' = 30°
Therefore, required value = (4 X 15) - 30 = 30°

- If cosec A = (2/√3), then what will be the value of tan⁴ A?
Suppose 140sin²X + 124cos²X = 136 and 184sin²Y + 200cos²Y = 196, then determine the value of 18cosec²Xsec²Y.
sin2 7˚ + sin2 9˚ + sin2 11˚ + sin2 12˚ + ……… + sin2 83˚ = ?
Two points P and Q are at the distance of x and y (where y > x) respectively from the base of a building and on a straight line. If the angles of elevat...
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° If SecA + TanA = 2√2 + 3, then find the value of Sin A + Cos A
If sin θ and cos θ are the root of standard Quadratic Equation , then which of the following is true ?
1. a2 + b2 - 2ac =...
If cosec (2A + B) = 2 and cosec (A + B) = 1, find the value of (3A – B).
- If sec A = 2, then what will be the value of sin² A?