Question
If secθ + tanθ = 3+√10, then the value
of sinθ+cosθ isSolution
secθ + tanθ = 3+√10 ............... (i) (sec²θ - tan²θ) = 1 (secθ + tanθ) (secθ - tanθ) = 1 (3+√10) (secθ - tanθ) = 1 secθ - tanθ = 1/(3+√10) = 1/(√10+3) secθ - tanθ = √10-3 ............ (ii) From (i) and (ii) we get, 2secθ = 2√10 secθ = √10 cosθ = 1/√10 sin²θ + cos²θ = 1 sin²θ + 1/10 = 1 sin²θ = 1- 1/10 = 9/10 sinθ = 3/√10 sinθ + cosθ = 3/√10 + 1/√10 = 4/√10 = 4/√10 × √10/√10 = (2√10)/5
- Find the maximum value of (20sin A + 15cos A).
If cos4 B - sin4 B =
If x tan 60° + cos 45° = sec 45° then the value of x2 + 1 is
If Sin θ + Cos θ = √2 Cos(90 - θ ), then find the value of Cot θ ?
...- If 8cos 2 Â A + 3sin 2 Â A = 9, then calculate the value of (sec 2 Â A - 1).
- If 2cosec 2  A – cot 2 A = 5 and 0 o < A < 90 o , then find the value of ‘A’.
What is the value of [(sin x + sin y) (sin x – sin y)]/[(cosx + cosy) (cosy – cosx)]?