Question
P and Q together finish a
piece of work in 12 days. R works at half the efficiency of P. Q alone can finish the work in 30 days. Now if Q and R work together to complete 2/3 of the job, and R is working at twice his usual efficiency, find how many days they will take.Solution
ATQ, P’s one day’s work = 1/12-1/30 = (5-2)/60 = 3/60 = 20 days So, P complete the work in 20 days. Let, total work is 120. Efficiency of P and Q is 6 and 4 respectively. R’s efficiency is = 6/2 = 3 So, required time is = [(120×(2/3))/(6+4)] = 8 days.
Consider the following Python-like pseudo-code for a modified Merge Sort algorithm that sorts an array `arr` and also counts the number of "reverse pair...
Given the following Python-like code snippet:
```python
class Counter:
def __init__(self):
...
Which SQL constraint ensures that a column cannot have NULL values?
Given a binary tree, a "zigzag" level order traversal prints the nodes level by level, but alternating the order of nodes from left-to-right and right-t...
What is a table joined with itself called?
A data warehouse is primarily characterized by which of the following properties?
Which of the following SQL queries would return the total number of employees in each department, but only for departments with more than 10 employees?
A PL/SQL `TRIGGER` is a stored program that automatically executes in response to:
An SQL `VIEW` is a:
Which property of a transaction ensures that either all operations within the transaction are completed successfully, or none of them are?