Question
A and B together, B and C together and A and C together
can complete a piece of work in 44 days, 33 days and 36 days respectively. Find the ratio of the efficiencies of A, B and C, respectively.Solution
Let, the total work be 396 units (LCM of 44, 33 and 36) Amount of work done by A and B together in one day = 396/44 = 9 units Amount of work done by B and C together in one day = 396/33 = 12 units Amount of work done by A and C together in one day = 396/36 = 11 units Amount of work done by A, B and C together in one day = (9 + 12 + 11)/2 = 16 units Amount of work done by A alone in one day = 16 тАУ 12 = 4 units Amount of work done by B alone in one day = 16 тАУ 11 = 5 units Amount of work done by C alone in one day = 16 тАУ 9 = 7 units So the desired ratio = 4:5:7
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдореЗрдВ рджрд┐рдП рдЧрдП рд╢рдмреНрдж рдХреЗ рд╕рдорд╛рдирд╛рд░я┐╜...
' рд▓реЛрдЪрди ' рдХрд┐рд╕рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рд╣реИ ?
рдЬрд╣рд╛рдБ рдЙрдкрдореЗрдп рдореЗрдВ рдЙрдкрдорд╛рди рдХреА рд╕рдВрднрд╛рд╡рдирд╛ рдкреНрд░рдХрдЯ рдХреА рдЬрд╛рддреА рд╣реИ рд╡рд╣рд╛рдБ я┐╜...
рдЖрдВрдЦреЗрдВ рдлреЗрд░ рд▓реЗрдирд╛┬а
' рдЬрд▓реЗ рдкрд░ рдирдордХ рдЫрд┐рдбрд╝рдХрдирд╛ ' рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рд╕рдЯреАрдХ рдЕрд░реНрде рд╣реИ :
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╕реЗ ' рдкрддреНрдиреА ' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рдирд╣реАрдВ рд╣реИ:
' рдкреНрд░рд╛рдЪрд╛рд░реНрдп ' рд╢рдмреНрдж рдореЗрдВ рдкреНрд░рдпреБрдХреНрдд рдЙрдкрд╕рд░реНрдЧ рдмрддрд╛рдПрдБ-
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рдЪрд╛рд░ рд╡рд╛рдХреНрдп рджрд┐рдП рдЧрдП я┐╜...
"рдзреИрд░реНрдп" рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рд╢рдмреНрдж рдХреНрдпрд╛ рд╣реИ?
рд╣рд┐рдиреНрджреА рдореЗрдВ рдРрд╕реЗ рдЕрдиреЗрдХ рд╢рдмреНрдж рд╣реИрдВ рдЬреЛ рдЕрдиреЗрдХрд╛рд░реНрдереА рд╣реЛрддреЗ рд╣реИрдВред рдирд┐...