Question
15 men can complete a piece of work in 5 days, while 20
women can complete it in 5 days. 8 men start working on the job & after working for 3 days, all of them stopped working. How many women should be put on the job to complete the remaining work in 4 days?Solution
One day work of a man = 1/(15 ×5) = 1/75 So, 3 days work of 8 men = 1/75 ×8 ×3 = 8/25 Remaining work = 1 - 8/25 = 17/25 One day work of a woman = 1/(20 ×5) = 1/100 According to the question Remaining work should be completed in 4 days Let the total number of women required to complete the remaining work in 4 days = x 4 days work of x women = 1/100 ×4 ×x = 17/25 x=17 Alternate Method: 15M ` ` 5 = 20W ` ` 5 M:W = 20:15 = 4:3 So 15M ` ` 5 = 8M ` ` 3 + xW ` ` 4 15 x 4 x 5 = 8 x 4 x 3 + x ` ` 3` ` 4 300 = 96 +12x 204 = 12x x=17
рдП, рдР, рдУ, рдФ рдХреМрди рд╕рд╛ рд╕реНрд╡рд░ рд╣реИ ?
'рдзреИрд░реНрдп' рдХрд╛ рд╕рдорд╛рдирд╛рд░реНрдердХ рд╢рдмреНрдж рд╣реИ:
рд╢реБрджреНрдз рд╡рд╛рдХреНрдп рд╣реИ
'рд╢рд┐рд╡' рдХрд╛ рдкрд░реНрдпрд╛рдп рд╣реИ
‘рдХрддрд░реНрд╡рд╛рдЪреНрдп’ рд╕реЗ рд╕рдВрдмрдВрдзрд┐рдд рд╡рд╛рдХреНрдпреЗ рд╣реИ –
┬арддрддреНрд╕рдо рд╢рдмреНрдж рд╣реИ
'рдЖрд╡рд╢реНрдпрдХ' рдореЗрдВ рдкреНрд░рддреНрдпрдп рд╣реИ
рд╢реБрджреНрдз рд╢рдмреНрдж рд╣реИ
'рдзрдиреНрдпрд╡рд╛рдж' рд╢рдмреНрдж рдореЗрдВ рдХреМрди-рд╕рд╛ рдЙрдкрд╕рд░реНрдЧ рд╣реИ?
'рдЖрдВрдЦреЛрдВ рдХрд╛ рддрд╛рд░рд╛ рд╣реЛрдирд╛ рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рд╕рд╣реА рдЕрд░реНрде рдХреНрдпрд╛ рд╣реИ