Question
I. 2b2 + 31b + 99 = 0 II. 4a2
+ 8a - 45 = 0Solution
I. 2b2 + 31b + 99 = 0 2b2 + 9b + 22b + 99 = 0 b (2b + 9) + 11(2b + 9) = 0 (b + 11) (2b + 9) = 0 b = -11, -9/2 II. 4a2 + 8a - 45 = 0 4a2 - 10a + 18a - 45 = 0 2a (2a - 5) + 9 (2a - 5) = 0 (2a + 9) (2a - 5) = 0 a = -9/2, 5/2 Hence, a ≥ b
More Quadratic equation Questions

If sin 2A = cos (3A - 60o) , then find the value of sec 2A.
- If 2 sin x = √3, then the value of x:
- Find the value of sin²33° + sin²57° + cos²48° + cos²42°.
If sec a + tan a = 5/2, find the value of sin a.
If 2 sec 3x = 4, then the value of x:
Find the maximum value of 22 sin A + 16 cos A.
- If cos A = √3/2, then what will be the value of tan² A?