Question
If a river is flowing at a rate of 6 km/hr and a boat's
speed in still water is 100% higher than the river's speed, and the boat travels 'd' kilometers downstream in 9 hours, what is the amount of time (in hours) required for the boat to cover (d+24) km upstream?Solution
Speed of a boat in still water = (200/100) × 6 = 12 km/hr According to the question, => d/(12 + 6) = 9 => d = 162 Required time = (162 + 24)/(12 – 6) = 31 hrs
Given below are two numbers series 'I' and 'II' and each series has a wrong (odd one out) number. The number that should come in place of the wrong num...
1331      1000            729       512       ?             216
...7Â Â Â Â Â Â Â Â Â Â Â 26Â Â Â Â Â Â Â Â Â Â Â Â Â Â 238Â Â Â Â Â Â Â Â Â Â Â Â Â Â 962Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8522Â Â Â Â Â Â Â Â Â Â Â Â Â ...
Direction: Which of the following will replace ‘?’ in the given question?
342, ‘?’, 420, 462, 506, 552, 60
7 12 33 ? 635 3804
...If 6 4 x 5.75 9,
Then, (x²-1) = ?
...6Â Â Â Â Â Â Â Â Â Â Â Â Â 7Â Â Â Â Â Â Â Â Â Â Â Â Â 15Â Â Â Â Â Â Â Â Â Â 46Â Â Â Â Â Â Â Â Â Â 185Â Â Â Â Â Â Â Â ?
...Identify the given logic and complete the series with the correct option. 12, 15, 18, 20,?
(45)2 ÷ ∛729 + (35)2 ÷ 1.4 =?
2187, 1458, 972, ?, 432, 288