Question
If sin 2 A + sin 4 A = 1 and cos
2 A + cos 4 A = 1, then find the value of (sin 4 A - cos 4 A)Solution
sin 2 A + sin 4 A = 1 -------- (I)
cos 2 A + cos 4 A = 1 ------- (II)
On subtracting equation I from II,
We get, sin 2 A + sin 4 A - cos 2 A - cos 4 A = 1 - 1
Or, sin 4 A - cos 4 A = cos 2 A - sin 2 A
Or, sin 4 A - cos 4 A = (cos A + sin A) (cos A - sin A)
65% of 102 + 14 = ? – 20
808 ÷ (128)1/7 + 482 = 4 × ? + 846
((8)0- (0.1)-1)/( (6/16)-1 ×(3/2)3+ ((-2)/6)-1) = ?/2
(36/8)2 × (912/38) ÷ (122/1586) = ?
...125% of 129 ÷ 43 × 28 ÷ 7 = ? ÷ √16
13 X ? = 85 X 4 + √81 + 2
54% of 250 = 6 × 21 + √?
15% of 360 × 20% of ? = 324
10 * 15 + 30% of 150 + 80% of 200 = ?
1299.999 ÷ 325.018 × 24.996 = ?