Question
Ramesh needs half the time that
Suresh needs to complete a job. Suresh and Tarun together complete it in 27 days, whereas Ramesh and Tarun take 18 days. How many days will Ramesh and Suresh require together?Solution
ATQ, Let the total work be 54 units. {LCM (27 and 18)} Efficiency of Suresh + Tarun = 54 ÷ 27 = 2 units/day Efficiency of Ramesh + Tarun = 54 ÷ 18 = 3 units/day Let: Suresh = s, Tarun = t Ramesh = 2s So, (s + t) = 2 ……… (i) (2s + t) = 3 ……… (ii) Subtracting (i) from (ii): s = 1 Efficiency of Ramesh = 2 × 1 = 2 units/day Required time = 54 ÷ (1 + 2) = 18 days
If 12 men working 12 hours a day can make 12 quilts in 12 days, then in how many days 24 men working 24 hours per day will make 24 quilts?
‘P’ can complete 40% of a task in 24 days, while ‘Q’ can complete 25% of the task in 20 days. How long will it take appro...
Reena and Teena together can do a piece of work in 60 days. Teena and Meena together can do it in 40 days. Reena starts the work and works on it for 10...
- A contractor is hired to complete a road in 40 days and initially employs 40 workers. After 24 days, he realizes that only one-third of the work has been c...
Ankit can complete a task in 16 days, while Bina alone can complete the same task in 24 days. Ankit starts the work alone and continues for 6 days. Then...
P and Q individually can complete the work in 36 days and 54 days respectively. If the time taken by R alone to complete the work is 1.25 times the time...
Aamir is twice as efficient a worker as Bender and together they can complete a work in 42 days. In how many days will Aamir alone complete the same work?
8 men working 6 hours a day can complete a piece of work in 6 days. If efficiency of each woman is 20% more than that of each man, then how many women w...
- Individually, X, Y and Z can finish a job in 15 days, 20 days, and 24 days respectively. How many days will they take to complete the job working together?
A and B individually can complete the work in 28 days and 42 days respectively. If the time taken by C alone to complete the work is 1.25 times the time...