Question
I. 4x2 + 3√7 x-7 =0 II. 7y2
+ 4√7 y-5=0 In each of these questions, two equations numbered I and II are given. You have to solve both the equation and mark the appropriate option – give answerSolution
I. 4x^2+ 3√7 x-7 =0 4x^2+ 4√7 x-√7 x-7 =0 4x(x+ √7)- √7 (x+ √7)= 0 (x+ √7) (4x- √7)= 0 x= -√7 , √7/4 Or x= (-7√7)/7 , √7/4 II. 7y^2+ 4√7 y-5=0 7y^2+ 5√7 y- √7-5=0 √7 y (√7 y+5)- 1(√7 y+5)= 0 (√7 y+5)(√7 y-1)= 0 y= (-5)/√7 , 1/√7 Or y= (-5√7)/7 , √7/7 Hence, No relation can be established between x and y
I. 15b2 + 26b + 8 = 0
II. 20a2 + 7a - 6 = 0
I. 6x² - 23x + 7 = 0
II. 6y² - 29y + 9 = 0
I. 5x2 β 7x β 6 =0
II. 2y2 β 5y β 7 =0
I. 2x2 β 5x - 12 = 0
II. y2 β 11y + 30 = 0
Find the maximum value of f(x)= β2xΒ² +8x + 3.
I: β(100 x4 + 125x4) + 7x + 41/2 = -4x
II: 3β(64y3) x 2y + 19y + 72 = -3y +...
I. 63x2 + 148x + 77 = 0
II. 21y2 + 89y + 88 = 0
I. 40 x² - 93 x + 54 = 0
II. 30 y² - 61 y + 30 = 0
I. 2b2 + 31b + 99 = 0
II. 4a2 + 8a - 45 = 0
I. x3 = 1728
II. y2 β 15y + 56 = 0