Total number of hats = 6 + 4 + 2 + 4 = 16 Let S be the sample space. Then, n(S) = number of ways of drawing 2 hats out of 16 = ¹⁶C_2 = (16 × 15 )/( 2 × 1) = 120 Let E= event of drawing two hats so that one is blue and one is yellow. n(E) = ⁴C_1×⁴C_1= 4 × 4= 16 ∴ P (E) = (n(E))/(n(S)) = 16/120 = 2/15
Statement: A > U ≥ L; A ≤ T = K; J > U
Conclusion: I. K > L II. J > T
Statements:
A ≥ L = B; C ≤ L < O; Q ≥ C < R
Conclusions:
I. A > C
II. C = A
Statements: F < G ≤ H; D < I; J ≥ G; F < A < D
Conclusions:
I. I > F
II. J > A
III. D > G
Statements:
R ≤ S = T; P < Q = R; S < U ≤ V; W ≥ V
Conclusions:
I). P < U
II). W > R
III). T ...
Statement: A > B = E < F > H; I ≤ D < C; H > G > C
Conclusions:
I. F > I
II. I < G
III. B < G
Statements: P % Q, P $ R, Q # S, R @ T
Conclusions:
I. R $ Q
II. S & T ...
Statement:X=Y ≥ Z > Q; Y < V ; W < Q
Conclusions:
I. V > W
II. Q > V
Statements: M = N; A < C < E; N > A
Conclusions:
I. E > N
II. M > C
Statements: L > S, O > Q, S = P, T ≥ P, O = T
Conclusion:
I. L ≥ Q
II. Q > L
Statements: X @ Y % M % N; M $ P $ Z
Conclusions : I. Y % Z II. X @ N ...