Question
In how many ways can the letters of the word TERRORISTS
be arranged by taking 4 letters at a time?Solution
There are 10 letters in the given word TERRORISTS and we have 10 letters of 6 different kinds viz, (T,T,T), (I,I), (S,S), E, O, R For a group of four letters, we have four cases (i) Three alike and one different (ii) Two alike and two other alike (iii) Two alike and other two different (iv) All four different In case (i), the number of selections = 3C3 × 5C1 = 5 In case (ii), the number of selections = 3C2 = 3 [Since, we can select two pairs out of 3 pairs (T,T) (I,I) (S,S)] In case (iii), the number of selections = 3C1 × 5C2 = 30 [since, we can select one of 3 pairs and then two from the remaining 5 letters say, I,S,E,O,R] In case (iv), the number of selections = 6C4 = 15 [since, we can select 4 different letters from 6 letters T, I,S,E,O,R ] In case (i), the number of arrangements = 5 ×4!/3! = 20 In case (ii), the number of arrangements = 3 ×4!/(2! ×2!) = 18 In case (iii), the number of arrangements = 30 ×4!/2! = 360 In case (iv), the number of arrangements = 15 × 4!= 360 Hence, the required number of arrangements = 20 + 18 + 360 + 360 = 758
If a discrete random variable X follows uniform distribution and assumes only the values 8, 9, 11, 15, 18, 20, the value of P(|X-14| < 5) will be:



Which of the following satisfies the time and factor reversal test?
The fair dice is rolled 15 times and face value are noted
Face Value:Â Â Â Â Â Â Â Â 1Â Â Â Â Â Â Â Â Â Â Â Â Â 2Â Â Â Â Â Â Â Â Â Â Â Â Â 3...
Completely randomized design is based on the principles of _________ and randomization only.
Approximately, the coefficient of variation for the given data where Pearson's second measure of skewness = 0.42, arithmetic mean- 86 and median 80, is:
Second differencing in time series can help to eliminate which trend?
(I) Quadratic trend
(II) Linear trend
If the first quartile of data set 8,10,8,7,9 is 7.5, then the value of quartile deviation is