Question
Rahul has joined Instagram and has 12 friends and each
of these friends has 20 friends. Later, it is found that at least two of his friends know each other and on marriage, he wants to invite all his friends and all the friends of his friends. Find the difference between minimum number of invitations sent by Rahul and the maximum number of invitations sent by Rahul.Solution
For minimum number of invitations sent by Rahul,
All of Rahul’s friends need to know each other and their friends should also be the same i.e.
12 friends should be common to each of his friends.
So, minimum number of invitations = 20 For maximum number of invitations sent by Rahul,
Rahul has 12 friends and each of his friends has 20 friends.
So, apart from Rahul, each of the 12 friends has 19 friends each.
As, Rahul’s at least two friends know each other
So, maximum number of invitation (When only two friends know each other)
= (12 × 19 + 12) – 2 = 238
Required difference = 238 − 20 = 218
Infant jaundice is yellow discoloration of new born baby's skin and eyes which occurs because the baby's blood contains an excess of a yellow pigment c...
Read the given statements and conclusions carefully. Assuming that the information given in the statements is true, even if it appears to be at variance...
Statement: M > N ≥ P > Q ≥ R > S ≥ T ≥ U > W
Conclusion:
1. U ≤ S
2. S < Q
Statements: M ≥ X ≥ B > V ≤ G = Y > K > U < N
Conclusion
I: G > U
II: V ≤ M
Statements: Z ≥ S > H, C > H, T = O ≥ H
Conclusions:
I. T > C
II. Z > H
Read the given statements and conclusions carefully and decide which of the conclusions logically follow(s) from the statements.
Statements:
Given below are two statements, followed by two conclusions. Assume the given statements to be true even if they vary with commonly known facts. Based o...
Read the given statements and the following conclusions carefully and select which of the conclusions logically follow(s) from the statements.
S...
Statements:
No truck is a bus.
All bus are train. Â
Only a few train are car.
Conclusions:
I. All bus may be car.
Statements: X ≥ P ≥ O = S; S ≤ H < N; N > I
Conclusions:
I. O ≥ N
II. I > O
III. S < X