Question
The volume of a cube is 1331 cm³. If the cost of painting
the cube is Rs. 7 per cm², then find the cost of painting five faces of the cube.Solution
Let the length of the edge of the cube be ‘x’ cm.
Volume of cube = x³
ATQ;
1331 = x³
Or, x = 11
Area of five faces of the cube = 5x² = 5 × 11 × 11 = 605 cm²
Required cost = 605 × 7 = Rs. 4,235
tan 1˚ × tan 2˚× …………………….tan 88˚ × tan 89˚ = ?
If x = 4 cos A + 5 sin A snd y = 4 sin A – 5 cos A, then the value of x2+y2 is :

Determined the simplified value of the given expression:(1 - sin2 q) X (sec q + tan q) X (sec q - tan q) X cosec2 q
What is the simplified value of the given expression?
2(sin² 15° + sin² 75°) + 4sin 30° - (2sec 60° + cot 45°)

If 9 sinx + 40 cosx = 41 then find tanx.
Find the slope of the equation : 12x + 4y = 28.
Solve for x in the interval [0, 2π]: 2 sin²x + 3 sinx - 2 = 0.
If (2sin A + cos A) = 3sin A, then find the value of cot A.