Question
AB is the diameter of a circle with center o. P is the
point on it If the cone ∠AOP is equal to 98 degrees then ∠OBP will be.Solution
∠ AOP = 98° ∠ POB = (180° - 98° ) = 82° Δ POB = ∠ P = ∠ B (Isosceles triangle) ∠ POB = 82° Δ ΡΟΒ = ∠ POB + ∠ OBP + 2 BPO = 180° 180° = 82°+ 2 x ∠ OBP 98/2 = ∠ OBP 49° =∠ OBP ∠ OBP =49° 
- Determine the value of:(sin 38 o cos 52 o + cos 2 38 o ) X sin 30 o + (cos 60 o tan...
- If sin (4A − B) = (√2/2) and cos (A + B) = (√2/2), where 0° < A, B < 90°, then find the value of ‘A’.
What is the value of [tan2 (90 – θ) – sin2 (90 – θ)] cosec2 (90 – θ) cot2 (90 – θ)?
...If sin θ + cos θ = 1.2, find the value of sin θ. cos θ.
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° What is the value of 1/(1+tan 2 θ ) + 1 / (1+cot 2 θ ) = ?
...If cos(2θ) = 1 - 2sin²(θ) and tan(θ) + cot(θ) = k, find the value of k when sin(θ) = 3/5.
Given that 'θ' is an angle less than 120 ° , what is the value of 'θ' if it satisfies the equation 3cos 2 θ = 2 + sin 2
Find the value of sin 30°.