Question
The sum of the perimeters of a square and a rectangle is
120 metres. If the sum of the length and breadth of the rectangle is 30 m, then find the area of the square.Solution
Perimeter of the rectangle = 2 x 30 = 60 m Perimeter of the square = 120 â 60 = 60 m Each side of the square = 60/4 = 15 m Therefore, area of the square = 152Â = 225 m2
- If X = 15°, find the value of:
sin²(4X) + cos²(3X) - tan²(2X) - Find the value of sin²18° + sin²72° + cos²63° + cos²27°.
If cos²α + cos²β = 2, then the value of tanâ´α + sinâ¸β is
- Find the simplified value of the expression:sin 2 45 o  + sin 2 60 o  - (1/3) X tan 2 60 o
Simplify (cos20°+sin 20°) /(cos20°-sin20°)
If A + B = 450 , then the value of 2(1 + tanA) (1 + tanB) is:
If tan θ = (2/â5), then determine the value of cos2 θ
If cosx/siny = n and cosx/cosy = m, then the value of cos 2 y is:
1. m 2 /(m 2 Â + n 2 )
2. 1/(m ...