Question
What will be inradius of a right angle triangle whose
base is 3 cm & height is 4 cm ?Solution
By pythogorus theorem, Hypotenuse 2Â = Base 2 +Height 2 = 32 + 42 = 9 + 16 = 25, So Hypotenuse = 5; Now inradius of a right angle triangle = (Base + Height - Hypotenuse)/2 = (3 + 4 - 5)/2 = 2/2 = 1 cm
What is the value of [tan2 (90 – θ) – sin2 (90 – θ)] cosec2 (90 – θ) cot2 (90 – θ)?
...sin2 9 ° + sin2 10 ° + sin2 11 ° + sin2 12 ° + ……… + sin2 81 ° = ?
...If (cos A - sin A) = √2 cos (90° - A), then find the value of cot A.
What is the value of cos [(180 – θ)/2] cos [(180 – 9θ)/2] + sin [(180 – 3θ)/2] sin [(180 – 13θ)/2]?
tan 20Ëš x tan 23Ëš x tan 67Ëš x tan 70Ëš = ?
If {(tanx)/(secx)} × cosx = (1/2), then determine the value of ‘sin2x’.
∆ PQR is right-angled at Q. If ∠R = 60º, then find the value of cosec P.
- If sin (3A − 2B) = (√3/2) and cos (A + B) = (1/2), where 0° < A, B < 90°, then find the value of ‘A’.
- If 2 sin x = √3, then the value of x:
- If sin A = 1/2, then what will be the value of cot² A?