Question
18 is divided into three parts which are in arithmetic
progression (A.P.) in such a way that the sum of their square is 158. Find the square of the sumSolution
Let the three numbers be (a-x), (a), (a+ x) ATQ- a-x +a+ a+ x = 18 3a = 18 a =6 So, numbers 6-x,6,6+x ATQ- (6-x) ² +36 +(6+x) ² = 158 36+x²-12x+36+36+x²+12x = 155 2x² = 158-108 =50 x² = 25 x= 5 So, find the series - 1,6,.11 square of the sum = 324
Statements: M % C & G @ T $ D; W % M # PÂ
Conclusions :Â Â Â Â Â I. D % CÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. M % GÂ Â Â Â Â Â Â Â Â Â Â Â Â ...
Statements: G > N > P = E ≥ H < L; M < E < B < C = Q > X; U > W > Y = Q > H
Conclusions:
I). U > P
II). Y > P
...Statements: A > B; C > D; E ≥ A; F = C; C < B
Conclusions:
(i) B > D (ii) A > F (iii) F < E
...Which of the following symbols should replace the question mark in the given statement in order to make conclusion 'B>Z' as well as 'C>X' definitely tr...
Statements: F % W, W © R, R @ M, M $ D
Conclusions:
 I.D @ R                               II.M $ F�...
Statements: H > S ≥ F = B ≤ U≤ T; E ≤ B ≤ K
Conclusions:I. K > F II. K = F
Statements:  B > K < Y, E > C ≥ O = Y
Conclusions:
I. C > B
II. E ≤ Y
III. E > K
IV. O ≥ K
...Statements: B > D = C ≥ E ≥ G, C = H ≤ I < F
Conclusions:
I. B > H
II. I ≥ G
III. F > DStatement: E < F ≤ G = H, I ≥ G ≤ J ≤ K
Conclusion: I. K > EÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. H > K
...Statement: W>Y<X<Z=U>S; W<T ≥V
I. Y<T
II. X > V