Question
Consider six consecutive odd numbers whose average is
34. If the highest number from this set is removed, what will be the average of the remaining five numbers?Solution
Let six consecutive odd numbers be ‘x’, ‘x + 2’, ‘x + 4’, ‘x + 6’, ‘x + 8’, ‘x + 10’, respectively. ATQ; (x + x + 2 + x + 4 + x + 6 + x + 8 + x + 10) = 34 × 6 Or, 6x + 30 = 204 Or, 6x = 174 Or, x = 29 When, the greatest number is excluded, Then, new sum of the remaining five numbers = x + x + 2 + x + 4 + x + 6 + x + 8 = 5x + 20 Required Average = {(5x + 20)/5} = (x + 4) = 29 + 4 = 33
14 15 34 116 460 2325
...92,  51,  21,  13.5,  x,  4.25
find the value of (10x + x -5)?
200, 50, ‘?’, 46.875, 82.03125
20 25 54 165 662 ?
...43 36 50 29 ? 22
...25Â Â Â Â Â Â Â Â Â Â 34Â Â Â Â Â Â Â Â Â Â 61Â Â Â Â Â Â Â Â Â Â 106Â Â Â Â Â Â Â Â 169Â Â Â Â Â Â Â Â ?
...Find the wrong number in the given series.
3 1.5 1.5 ? 4.5 11.25
...2, 12, 90, 240, ?, 1260
7 13 15 29 31 57
...9 16 56 318 2424 25070
...