Question
If x = (2+√3)/(2-√3), y = (2-√3)/(2+√3). Then
find out the value of (x²+y²-xy)/(x²+y²+xy)?Solution
x = (2+√3)/(2-√3) y = (2-√3)/(2+√3) So x+y = (2+√3)/(2-√3) + (2-√3)/(2+√3) = ((2+√3)²+ (2-√3)²)/((2)²- (√3)²) = 2(4+3)/(4-3) {As (a+b)² + (a-b)² = 2(a^2+b^2 )} = x+y = 14 = xy = 1 = (x^2+y^2-xy)/(x^2+y^2+xy) = ((x+y)²-3xy)/((x+y)²-xy) = ((14)^2- 3)/((14)^2-1) = (196-3)/(196 - 1) = 193/195
12.5% of (100 + ?) = 40
2/9 of 5/8 of 3/25 of ? = 40
24 × √? + 4008 ÷ 24 = 40% of 200 + 327
7(1/2) – 3(5/6) = ? − 2(7/12)
280 ÷ 14 + 11 × 12 – 15 × 6 = ?
1550 ÷ 62 + 54.6 x 36 = (? x 10) + (28.5 x 40)
25% of 1000 + 10% of 150 – 22 × ? = 45
√ 729 × 5 – 220 % of 15 + ? = 120% of 160
What will come in the place of question mark (?) in the given expression?
(40% of ? × 43 ) – 232 = 751
180 % of 45 + √144 × 8 = ?2 + 80 % of 70