Start learning 50% faster. Sign in now
Let the present ages of 'Adarsh' and 'Malik' be '3a' years and '7a' years, respectively. ATQ: 3a + 2 = 7a ÷ 2 Or, 3a + 2 = 3.5a Or, 2 = 0.5a So, a = 4 So, present age of 'Adarsh' = 3a = 3 × 4 = 12 years And present age of 'Malik' = 7a = 7 × 4 = 28 years ATQ; {(12 - x))/(28 - x)} = (1/3) 3 × (12 - x) = 28 - x Or, 36 - 3x = 28 - x Or, 2x = 8 So, x = 4
Statements: H > E > I < F; D < I ≤ J; G < N ≤ D
Conclusions:
I. N < H
II. F ≥ G
Statement:G≥ K, K ≤ S, S = M, M < N
Conclusion: I. N > K II. G < S
Statements: D > E ≥ F ≥ G; H < I = G > J
Conclusions: I. J > E II. G < D
...Statements: H = U > G, S < G
I. H ≥ S
II. U > S
Statements: C = D ≥ G ≥ H; K ≤ I < H; K < F < E
Conclusions:
I. C ≤ I
II. G > F
III. H ≤ D
Statements:
I ≤ A ≤ S = X < L; N > W > G ≥ P ≥ S
Conclusions:
I. G ≥ A
II. N > L
Statements: O > M = Q > S; M ≥ K > A; Q ≤ O < E
Conclusions: I. O > S II. K < O �...
Statements: M ≤ N = O ≤ P; P = Q ≤ U; R > N = U
Conclusions:
I. R > O
II. U ≥ M
Statements: K * D, D $ N, N % M, M © W
Conclusions: I.M % W II.M $ W III.N @ D�...
Statements: A % O & Z % O; O # C & E; E @ P # D
Conclusions : I. C @ P II. A % P ...