Question
Train βAβ can cross a pole in 8 seconds and a 70
metre long platform in 12 seconds. If the ratio of length of train βAβ and train βBβ is 2:5, respectively, then find the time taken by train βBβ to cross a pole with a speed of 25 m/s.Solution
Let the length and speed of the train βAβ be βlβ metre and βsβ m/s, respectively. According to question, l = 8s Also, 12s = 8s + 70 Or, 4s = 70 Or, s = 17.5 Therefore, length of train βAβ = 8s = 140 metres Length of train βBβ = 70 Γ (5/2) = 350 metres Required time taken = 350 Γ· 25 = 14 second
Successful traditional Basmati Rice cultivation lies on exposing of ________stage to cool temperature
First line demonstration was launched by
What is the maximum amount of loan under the KCC scheme for Animal Husbandry and Fisheries that does not require collateral?
The wild growth of ______ is checked with Cochineal insect in Australia
Who is father of extension in India?
Clouds associated with steady precipitation in the form of rain or snow.
Which state is the largest producer of cotton in India, as per agricultural statistics for 2025?
Capillary and non capillary pores must be in _______ proportion for good crop production:
What is the primary objective of the A-HELP program launched on 30 July 2024?
Light-stable synthetic pyrethroids, which is registered to control mites