Question
If sec a + tan a = 3, find the value of sin a.Ā
Solution
Given, sec a + tan a = 3 ..............(I)Ā We know that, sec² a - tan² a = 1Ā Or, (sec a + tan a) (sec a - tan a) = 1Ā So, sec a - tan a = (1/3) ...........(II)Ā On adding equations (I) and (II), we get;Ā 2 sec a = 3 + (1/3) = (10/3)Ā Or, sec a = (5/3)Ā So, cos a = [1/(sec a)] = (3/5)Ā So, sin a = ā[1 - (3/5)²] = ā(16/25) = (4/5)Ā Hence, sin a = (4/5)Ā
Find the value of the given trigonometric expression:
(sin 10°cos 80° + cos²10°) à sin 30° + (cos 60°tan 45°) à sec 60°
...- If sin(A + B) = sinAcosB + cosAsinB, then the value of sin75° is
If cosec2A = (sin60oĀ + tan45oĀ X sec245o), then find the value of sin2A.
(tan 5x - tan 3x - tan 2x) = ?
If sec A + tan A = (9/4) and sec A - tan A = (4/9), find the value of cos A.
- Simplify the following trigonometric expression:
9 sin 36° csc 54° ā 7 tan 47° cot 43° if a sin 45 Ė = b cosec 60 Ė then find the value of aā“/bā“
...Find the value of (1 - sin2q) X (secq + tanq) X (secq - tanq) X cosec2q
- sin1440° - cot630° - sin120°cos150° is equal to:
- If X = 15°, find the value of:
cos²(2X) + sin²(3X) - tan²(2X)