Question
If 5tanθ = 12, then find the value of (sinθ –
cosθ).Solution
We have, 5tanθ = 12
So, tan θ = (12/5)
Or, (perpendicular/base) = (12/5)
So, hypotenuse 2 = base 2 + perpendicular 2 = 5 2 + 12 2
So, hypotenuse = √169 = 13
So, sin θ = (perpendicular/hypotenuse) = (12/13)
And, cos θ = (base/ hypotenuse) = (5/13)
Therefore, sin θ – cos θ = (12/13) – (5/13) = (7/13)
Statements: L $ W, W * H, H # T, P % T
Conclusions: I. T @ L II. H % L �...
Statements: M $ K; K & N, N % R, R @ W
Conclusions:
I. W & K
II. K & W �...
Statements: M ≤ N; O < R; O = N; S ≥ Q; N > S
Conclusions:
(i) Q < M
(ii) N ≥ Q
(iii) M > R
Statements : T % W % B $ I @ L
Conclusions :
I. B * T
II. L © B
III. L * T
Statement: K = B; D ≥ L ≥ T ≥ B
Conclusion: I. D > K II. D = K
Statements: M > L = K ≥ H, V > G > M, U < N = H
Conclusions:
I. V > U
II. H < G
III. L ≥ V
Statements: I ≥ J ≤ K = L ≤ M; G ≤ H < I; M ≤ N < O ≥ P
Conclusions:
I. M < H
II. N ≥ J
III. M ≥ H
...Statements: O ≥ M > F, K ≤ J ≤ D = F, B ≤ Z ≤ L = K
Conclusion:
I. M > L
II. D ≥ B
Statements: Q ≤ P ≤ R < S, T = M > Q > V
Conclusions:
I. T > V
II. V < S
III. Q < T
...Statements: W > O > E ≤ N > P; L ≥ U; P > Q = R > U
Conclusions:
I. N > U
II. P > U
III. P < L
IV....