Question
Below given are 2 wrong number series, where ‘x’ is
the correct replacement of the wrong term of series I & ‘y’ is the correct replacement of the wrong term of series II. Series I: 50, 57, 69, 84, 100, 118 Series II: 213, 109, 111, 168, 348, 843 I. 'y' is not a multiple of 'x'. II. Adding 24 to 'y' and then dividing the result by 'x+9' leaves a remainder of 45. III. The sum of the incorrect values is divisible by 12.Solution
ATQ, Series I 50 + 7 × 1 = 57 57 + 6 × 2 = 69 69 + 5 × 3 = 84 84 + 4 × 4 = 100 100 + 3 × 5 = 115 x = 115 Series II 213 × 0.5 + 2.5 = 109 109× 1 + 2 = 111 111 × 1.5 + 1.5 = 168 168× 2 + 1 = 337 337× 2.5 + 0.5 = 843 ‘y’ = 337 I. y/x = 337/115 (True) II. (y + 24)/(x + 9) = (337 + 24)/(115 + 9) = 361/124 (False) III.118 + 348 = 466  = 466/12 (False) Hence, Only I is correct
Identify the logic of the below given series and given answer.
Series I :: 81, 89, 116, 241, (A), 1915
Series II :: (B), 204, 208, 4...
18Â Â Â Â Â Â Â Â Â Â 434Â Â Â Â Â Â Â Â 642Â Â Â Â Â Â Â Â 746Â Â Â Â Â Â Â Â 798Â Â Â Â Â Â Â Â ?
...10, 22, 46, ?, 130, 190
12, 20, 36, ?, 132, 260
8Â Â Â Â 20Â Â Â Â 36Â Â Â Â Â 56Â Â Â Â Â 80Â Â Â Â ?
If 152,   242,    x ,  332,   404,    314,
then find the value of (2x – 1)?
...21, 22, 48, 153, 628, ?
30Â Â Â Â Â Â 15Â Â Â Â Â Â Â 15Â Â Â Â Â Â Â 30 Â Â Â Â Â Â Â 120Â Â Â Â Â Â Â ?
...48Â Â Â Â 61 Â Â Â Â 76 Â Â Â Â 94Â Â Â Â 116 Â Â Â Â Â ?
If 4 2 x 1.5 0.5
Then, 1/3 x + 2.5 = ?