Question
Solve the quadratic equations and determine the relation
between x and y: Equation 1: x² - 34x + 285 = 0 Equation 2: y² - 26y + 165 = 0Solution
From Equation 1: x² - 34x + 285 = 0 Factorizing: (x - 15)(x - 19) = 0 So, x = 15 or x = 19. From Equation 2: y² - 26y + 165 = 0 Factorizing: (y - 11)(y - 15) = 0 So, y = 11 or y = 15. Comparing x and y: x = 15, y = 11, x > y x = 15, y = 15, x = y x = 19, y = 11, x > y x = 19, y = 15, x > y Correct option: B) x ≥ y
If (sinθ+cosθ)/(sinθ-cosθ) = 2, then the value of sin4 θ is
Find the value of the given expression.
5 × (cos 60°)
If 2sin y + cos y = √3 sin y, then find the value of tan y
If tan θ + cot θ = 5, find the value of tan²θ + cot²θ.
Simplify the following trigonometric expression:Â
8 cos 40° cosec 50° − 2 cot 30° cot 60°Â
Find the value of (1 - sin2q) X (secq + tanq) X (secq - tanq) X cosec2q

- Find the maximum value of (15sin A + 12cos A).
What is the simplified value of the given expression?
3(sin² 30° + sin² 60°) + 6sin 45° - (3sec 60° + cot 45°)