I. p^{2} - 19p + 88 = 0 II. q^{2} - 48q + 576 = 0

I. p^{2}- 19p + 88 = 0

(p - 11) (p - 8) = 0

p = 11 or 8

II. q^{2}- 48q + 576 = 0

(q – 24) (q – 24) = 0

q = 24 or 24

Hence, q > p

Alternate Method:

if signs of quadratic equation is -ve and +ve respectively then the roots of equation will be +ve and +ve.

So, roots of first equation = p = 11, 8

So, roots of second equation = q = 24

After comparing roots of quadratic eqution we can conclude that p < q.

- I. 63x² + 146x + 80 = 0 II. 42y² + 109y + 70 = 0
- I.8
^{(x+3)}+ 8^{(-x)}=72 II. 5^{(y + 5)}+ 5^{(-y)}= 150 - I. 20y² - 13y + 2 = 0 II. 6x² - 25x + 14 = 0
- I. (2x-3)
^{3}+ 1/((2x-3)³)=2 II. 4y²+(y+8)^2= 157 - I. 2x
^{2}– 25x + 33 = 0 II. 3y^{2}+ 40y + 48 = 0 - I. 2x
^{2}- 15x + 25 = 0 II. 3y^{2}- 10y + 8 = 0 - I. 20x² - 93x + 108 = 0 II.72y² - 47y - 144 = 0
- How many values of x and y satisfy the equation 2x + 4y = 8 & 3x + 6y = 10.
- I. 99 x² + 31 x – 110 = 0 II. 6y² - 31y + 35 = 0
- I. 3x² - 5x + 2 = 0 II. 6y² - 19y + 14 =0

More Quadratic equation Questions

×

×