Question
22 defective pens are accidentally mixed with 136 good
ones. It is not possible to just look at a pen and tell whether or not it is defective. One pen is taken out at random from this lot. Determine the probability that the pen is taken out is a good one.Solution
Numbers of pens = Numbers of defective pens + Numbers of good pens ∴ Total number of pens = 136 + 22 = 158 pens P(E) = (Number of favourable outcomes) / (Total number of outcomes) P(picking a good pen) = 136/158 = 0.860
Four letter-clusters have been given, out of which three are alike in some manner and one is different. Select the letter-cluster that is different.
Three of the following four letter-clusters are alike in a certain way and one is different. Pick the odd one out.
In the following question, select the odd letters from the given alternatives.
Select the odd letters from the given alternatives?
Three of the following four letter-clusters are alike in a certain manner and one is different. Select the odd letter-cluster.
In the following question, select the odd pair in the given alternatives.
Find the odd one out.
1) Brick 2) Heart 3) Club 4) Spade
Select the letter cluster which does not belong to the same group from the given alternatives.
Four letter-clusters are given out of which three are alike in some manner and one is different. Select the odd-one out.
Four letter-clusters have been given, out of which three are alike in some manner and one is different. Select the odd letter-cluster.