Question
Smaller diagonal of a rhombus is equal to length of its
sides. If length of each side is 4 cm, then what is the area (in square cm) of an equilateral triangle with side equal to the bigger diagonal of the rhombus?Solution
Let the longest diagonal be d. 42 = 22 + (d/2)2 16 - 4 = d2/4 12 ├Ч 4 = d ├Ч d┬а d = 4тИЪ3 Side of the equilatral triangle = 4тИЪ3 Area of the triangle = (тИЪ3/4) ├Ч a2 = (тИЪ3/4) ├Ч (4тИЪ3) ├Ч (4тИЪ3) Area of the triangle = 12тИЪ3 cm2
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдореЗрдВ рджрд┐рдпреЗ рдЧрдпреЗ рдЪрд╛рд░ - рдЪрд╛рд░ рд╡рд┐рдХрд▓реНрдкреЛ...
рдиреАрдЪреЗ рджрд┐рдпрд╛ рдЧрдпрд╛ рд╡рд╛рдХреНрдп рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдБрдЯрд╛ рдЧрдпрд╛ рд╣реИ ( A), (B), (C), рдФрд░ ( D) я┐╜...
рдиреАрдЪреЗ рджрд┐рдпрд╛ рдЧрдпрд╛ рд╡рд╛рдХреНрдп рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдБрдЯрд╛ рдЧрдпрд╛ рд╣реИ ( A), (B), (C), рдФрд░ ( D) я┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдореЗрдВ рджрд┐рдпреЗ рдЧрдпреЗ рдкрд╛рдВрдЪ рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рд╕реЗ рд╢реБя┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдореЗрдВ рджрд┐рдпреЗ рдЧрдпреЗ рдкрд╛рдВрдЪ рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рд╕реЗ рд╢реБя┐╜...
рд╣рдорд╛рд░реЗ ( 1) / рдЧрд▓реЗ рдореЗрдВ ( 2) / рдкрдбрд╝реА ( 3) / рдереАрдВ ( 4) / рдкрд░рд╛рдзреАрдирддрд╛ рдХреА ( 5) / рдмреЗрдбрд╝рд┐я┐╜...
рдирд┐рд░реНрджреЗрд╢ -┬а рд╡рд╛рдХреНрдп рдХреЗ рдЕрд╢реБрджреНрдз рднрд╛рдЧ рдХрд╛ рдЪрдпрди рдХреАрдЬрд┐рдП тАУ
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрди рдореЗрдВ , рдЪрд╛рд░ рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рд╕реЗ , рдЙрд╕ рд╡рд┐рдХрд▓реНрдк рдХрд╛ рдЪ...
рдирд┐рдореНрди рд▓рд┐рдЦрд┐рдд рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдХреЛ рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдВрдЯрд╛ рдЧрдпя┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╡рд╛рдХреНрдп рд╢реБрджреНрдз рд╣реИ ?