πŸ“’ Too many exams? Don’t know which one suits you best? Book Your Free Expert πŸ‘‰ call Now!


    ⚑ BIG BEE DAYS Are Live - Spin the Wheel to Get BIGGEST DISCOUNT of the Year -⚑

    Question

    Pipe β€˜X’ alone can fill a tank in 20 hours. When

    both pipes β€˜X’ and β€˜Y’ are opened together, they can fill 75% of the tank in 9 hours. How much time will pipe β€˜Y’ alone take to fill 80% of the same tank?
    A 24 hrs Correct Answer Incorrect Answer
    B 15 hrs Correct Answer Incorrect Answer
    C 18 hrs Correct Answer Incorrect Answer
    D 12 hrs Correct Answer Incorrect Answer
    E None of these Correct Answer Incorrect Answer

    Solution

    ATQ,
    Time taken by pipes β€˜X’ and β€˜Y’ together to fill 100% of the tank = 9 Γ· 0.75 = 12 hours
    Let the capacity of the tank be 60 litres. {LCM (20 and 12)}
    Efficiency of pipe β€˜X’ = (60/20) = 3 litres/hour
    Efficiency of pipe β€˜X’ and β€˜Y’ together = (60/12) = 5 litres/hour
    Efficiency of pipe β€˜Y’ = 5 – 3 = 2 litres/hour
    Time taken by pipe β€˜Y’ to fill 80% of the tank = (60 Γ— 0.8)/2 = 24 hours

    Practice Next
    More Pipes and cisterns Questions

    Relevant for Exams:

    ask-question