Question
Determine the number of unique arrangements of the
letters in “ELEPHANT” if the vowels always stay together.Solution
ATQ,
The word “ELEPHANT” has 8 letters.
Vowels: E, E, A → 3 vowels (E repeated twice)
Consonants: L, P, H, N, T → 5 consonants
Treat all vowels as one block → total entities to arrange: 1 vowel block + 5 consonants = 6
So, outer arrangement = 6!
Inside the vowel block (E, E, A) → 3 letters with 2 E’s repeated → internal arrangement = 3!/2!
Total number of words = 6! Ă— 3!/2! = 720 Ă— 3 = 2160
2, 6, 44, 462, 6930, 131670
12, 10, 23, 65, 265, 1289Â
- Find the wrong number in the given number series.
5, 30, 255, 860, 2105, 4130 40, 56, 85, 129, 190, 268
0.15, 3.15, 12.30 , 45.90, 195.60, 998
Find the wrong number in the given number series.
17, 36, 73, 134, 220, 352Â
12, 13, 21, 44, 116.5, 340.5
Find the wrong number in given number series.
2372, 2356, 2320, 2256, 2156, 2048.
1024Â Â 3072Â Â Â 384Â Â Â 1152Â Â Â 145Â Â Â 432
A-5,  A,  35,  52, 78, 115