Question
A and B started a business with the investments of Rs.
(y-2000) and Rs. (y+4000) respectively. After 4 months of the start of the business, B left it and C joined it. The initial investment of C is Rs. 1000 less than the average of the initial investment of A and B together. If at the end of one year, the ratio between the profits of B and C is 5:8 respectively, then find out the initial investment of A is what percentage of the initial investment of C?Solution
The initial investment of C is Rs. 1000 less than the average of the initial investment of A and B together.
initial investment of C = [(y-2000)+(y+4000)]/2 - 1000
= [2y+2000]/2 - 1000
= y+1000-1000
= y
The ratio between the investment of A, B and C with respect to the time = (y-2000)x12 : (y+4000)x4 : yx8
= (y-2000)x3 : (y+4000) : yx2
The ratio between the profits of B and C is 5:8 respectively.
(y+4000)/2y = 5/8
(y+4000)/y = 5/4
4y+16000 = 5y
5y-4y = 16000
y = 16000
Required percentage = [(y-2000)/y]x100
= [(16000-2000)/16000]x100
= [14000/16000]x100
= 14000/160
= 87.5%
рдЖрд╢рд╛┬а┬а
рддреАрдХреНрд╖реНрдг рдХреЗ рд╡реИрдХрд▓реНрдкрд┐рдХ рд╡рд┐рд▓реЛрдо рд╢рдмреНрдж рджрд┐рдП рдЧрдП рд╣реИрдВ. рд╕рд╣реА рд╡рд┐рд▓реЛрдо рд╢я┐╜...
' рд╕рдВрд░рдЪрдирд╛ ' рд╢рдмреНрдж рдХреЗ рд▓рд┐рдП рдХреМрди-рд╕рд╛ рдкрд░реНрдпрд╛рдп рд╢рдмреНрдж рдЕрдиреБрдЪрд┐рдд рд╣реИрдВ ?
рдПрдХрд╛рдзрд┐рдХрд╛рд░ рдХрд╛ рд╡рд┐рд▓реЛрдо рд╢рдмреНрдж рд╣реИ-
рд╢реАрддрд▓ рдЕрдЪреНрдЫреА рд▓реЬрдХреА рд╣реИред рдЕрдЪреНрдЫреА рд╢рдмреНрдж рдХрд┐рд╕ рдкреНрд░рдХрд╛рд░ рдХрд╛ рд╢рдмреНрдж рд╣реИ ?
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрди рдореЗрдВ рд╡рд┐рд╖рдо рд╢рдмреНрдж рдХрд╛ рдЪрдпрди рдХрд░реЗ ?┬а
рдЬрд┐рд╕реЗ рд╣рд░рд╛рдпрд╛ рди рдЬрд╛ рд╕рдХреЗ┬а
рд╕рд╛рдЧрд░┬а┬а
рдЕрдкреЗрдХреНрд╖рд╛ рдХрд╛ рд╡рд┐рд▓реЛрдо рдмрддрд╛рдЗрдП-
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╡рд░реНрдг рдореВрд░реНрдзрдиреНрдп рд╡рд░реНрдг рд╣реИ ?