Question
Which of the following numbers is divisible by
11?Solution
Divisibility check for 11 = Difference between sum of digits at odd places and sum of digits at even places must be either '0' or a multiple of 11. For option 'A': 64855 = (6 + 8 + 5) - (4 + 5) = 10 {Not divisible by 11} For option 'B': 29239 = (2 + 2 + 9) - (9 + 3) = 1 {Not divisible by 11} For option 'C': 53416 = (5 + 4 + 6) - (3 + 1) = 11 {Divisible by 11} For option 'D': 53151 = (5 + 1 + 1) - (3 + 5) = -1 {Not divisible by 11}.
Statements: A $ B, B * C, D % A
Conclusions: a) C # DÂ Â Â Â Â b) D $ B
Statements:Â Â Â Â Â Â Â M @ N % Z #Â C & B $ AÂ # E; W $ Z @ C
Conclusions :Â Â Â Â Â I. E @ ZÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. A # WÂ Â Â ...
Statements: H = U > G, S < G
I. H ≥ S
II. U > S
Statements: M $ K; K & N, N % R, R @ W
Conclusions:Â Â Â Â Â
I. W & KÂ Â Â Â Â Â Â Â Â Â Â Â Â Â
II. K & W         �...
What will come in place of blank in following below such that both P @ S and V % R are definitely true?
P $ Q @ R _ S $ T © U $ V
i) @ Â ...
Statements: C = A ≤ H < K ≥ L = Q; S = T ≥ K
Conclusion: I. C < T II. A = S
...Statements: B & Y, Y # M, M $ X, X @ S
Conclusions: I. X $ YÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. X & Y
...Statements: T @ A % S $ L © JÂ
Conclusions:Â
 I. T % LÂ
II. T $ LÂ
III. S # J
Statements: F @ R, R $ J, V % J, V # Z
Conclusions: I. F * V       II. R * V                              �...
I n the question, assuming the given statements to be true, find which of the conclusion (s) among given three conclusions is /are definitely true and t...