Question
À two-digit number decreases by 18 when its both digits
are written in reverse order. If unit digit of original number is equal to the unit digit of 226. Find the product of both digits of the number?Solution
Let the number be x and y and for two digits = 10x + y so, ATQ => (10x + y) – (10y – x) = 18 => 9x – 9y = 18 => x – y = 2 unit digit of 226 = 4 so, y = 4 x – y = 2 so, x = 6 Therefore, product of x and y = 4 × 6 = 24
Statement : M=N≥P<Q; R>Q ; T ≥N
Conclusion:
I. N<T
II. N≥R
...Statements:
A < R ≤ M =S; U > L = T; A < L = O > E
Conclusions:
I). U > E
II). L > M
...Statements: B ≤ C = T; Z ≥ N ≥ D > K ≥ T
Conclusions:
I. C < N
II. B ≤ K
III. N > B
...Statements:
A < L ≤ P > D; F > W = P > S ≥ T
Conclusion:
I. S > L
II. F ≥ A
Statements: T > V > Q > S; L > S > V ≥ O ≤ X < Y
Conclusions:
I. T > L
II. V ≥ Y
III. T > OÂ
Statements:          K @M,   L #M,  L$W,  W%X
 Conclusions:         Â
I.K%LÂ Â Â
II. M@WÂ Â Â Â Â <...
Statements: Â A % I, IÂ * Â Q, Q % R, R $ M
Conclusions :
I. Â M # I
II. M # Q
III. I # R
IV. Q % A
Statement: S > P, P ≥ U, U > V, V ≤ N
Conclusion: I. N ≥ U II. S < N
Statements: G < H  ≤  I, V  ≥ W = G, R  ≥ I = A
Conclusions :
I. R > G
II. A ≥ H  Â
 III. H ≤ R
...Statements: Q = R; S ≥ T; P ≤ Q; R > V; R > S; T ≥ U
Conclusions:
(i) R > U (ii) V ≥ U (iii) P = R (iv) P < R
...