Question
Mixture lsquo;Arsquo; contains 80% acetone and rest 30
litres water. Mixture lsquo;Brsquo; contains 72 litres acetone and rest 40% water. When two mixtures are mixed, then find the ratio of acetone to water in the resultant mixture.Solution
Quantity of water in mixture lsquo;Arsquo; = 30 litres Total quantity of mixture lsquo;Arsquo; = 30/0.20 = 150 litres Therefore, quantity of acetone in mixture lsquo;Arsquo; = 150 ndash; 30 = 120 litres Quantity of acetone in mixture lsquo;Brsquo; = 72 litres Total quantity of mixture lsquo;Brsquo; = 72/0.40 = 120 litres Quantity of water in mixture lsquo;Brsquo; = 120 ndash; 72 = 48 litres Therefore, quantity of acetone in resultant mixture = 120 + 48 = 192 litres Quantity of water in resultant mixture = 48 + 30 = 78 litres Required ratio = 192 : 78 = 32 : 13
Find the value of the given trigonometric expression:
(sin 10°cos 80° + cos²10°) à sin 30° + (cos 60°tan 45°) à sec 60°
...- If sin(A + B) = sinAcosB + cosAsinB, then the value of sin75° is
If cosec2A = (sin60oĀ + tan45oĀ X sec245o), then find the value of sin2A.
(tan 5x - tan 3x - tan 2x) = ?
If sec A + tan A = (9/4) and sec A - tan A = (4/9), find the value of cos A.
- Simplify the following trigonometric expression:
9 sin 36° csc 54° ā 7 tan 47° cot 43° if a sin 45 Ė = b cosec 60 Ė then find the value of aā“/bā“
...Find the value of (1 - sin2q) X (secq + tanq) X (secq - tanq) X cosec2q
- sin1440° - cot630° - sin120°cos150° is equal to:
- If X = 15°, find the value of:
cos²(2X) + sin²(3X) - tan²(2X)