Question
Find the curved surface area of a right circular cylinder
whose radius is 14 cm and volume is 6,160 cm³. (Use π = 22/7)Solution
ATQ,
Volume of cylinder = π × radius² × height
So, (22/7) × 14² × height = 6,160
Or, (22/7) × 196 × height = 6,160
Or, 616 × height = 6,160
Or, height = 10 cm
Curved surface area of cylinder = 2 × π × radius × height
= 2 × (22/7) × 14 × 10
= 880 cm²
If (3cos A - sin A) = 2 cos (90° - A), then find the value of cot A.
Calculate the value of sec75o
- If 2 sin x = √3, then the value of x:
- If sin A = 1/2, then what will be the value of cot² A?
If cos θ + sec θ = √2, then the value of cos³ θ+ sec³ θ is:
Sec A -Tan A = 1/16 then find the value of cot A =?
Determined the simplified value of the given expression:(1 - sin2 q) X (sec q + tan q) X (sec q - tan q) X cosec2 q
If 17sin A = 8, where 0
If x = (sin 30 ° + cos 30 ° )/sec 60 ° , then find the value of 4x.