Question
A solid cone and a solid hemisphere have the same radius
and height. If the volume of the cone is 540 cm³, find the volume of the hemisphere.Solution
Volume of a cone = (1/3)Ļr²h, Volume of a hemisphere = (2/3)Ļr³. Since the radius and height are the same, the volume of the hemisphere will be double the volume of the cone. Volume of the hemisphere = 2 Ć 540 = 1080 cm³. Correct option: B) 1080 cm³
- If X = 15°, find the value of:
sin²(4X) + cos²(3X) - tan²(2X) - Find the value of sin²18° + sin²72° + cos²63° + cos²27°.
If cos²α + cos²β = 2, then the value of tanā“α + sināøβ is
- Find the simplified value of the expression:sin 2 45 o Ā + sin 2 60 o Ā - (1/3) X tan 2 60 o
Simplify (cos20°+sin 20°) /(cos20°-sin20°)
If A + B = 450 , then the value of 2(1 + tanA) (1 + tanB) is:
If tan Īø = (2/ā5), then determine the value of cos2Ā Īø
If cosx/siny = n and cosx/cosy = m, then the value of cos 2 y is:
1. m 2 /(m 2 Ā + n 2 )
2. 1/(m ...