Question
The circumference of a circle is 77 cm and the length of
the rectangle is 4 times the radius of the circle. Find the area (in cm2) of the rectangle, if the ratio of length and the breadth of the rectangle is 7:5, respectively.Solution
Let the radius of the circle = ‘r’ cm Circumference of the circle = 2πr 77 = 2 × (22/7) × r r = 12.25 Radius of the circle = 12.25 cm Length of the rectangle = 12.25 × 4 = 49 cm Breadth of the rectangle = (49/7) × 5 = 35 cm Area of the rectangle = 49 × 35 = 1715 cm2
∆ PQR is right-angled at Q. If ∠R = 60º, then find the value of cosec P.
tan 1˚ × tan 2˚× …………………….tan 88˚ × tan 89˚ = ?
Find the value of sin(θ) if 2sinθ = tanθ, for 0 < θ < 90°.
If θ is an acute angle and sin θ + cosec θ = 2, then the value of sin2 θ + cosec2 θ is:
tan 20Ëš x tan 23Ëš x tan 67Ëš x tan 70Ëš = ?
If cos² x + sin x = 5/4, then find the value of 'sin x'.
If 4sin² θ = 3(1+ cos θ), 0° < θ < 90°, then what is the value of (2tan θ + 4sinθ - secθ)?
- If sin 2a = (3/4), then find the value of (sin a + cos a).
If sin(3θ) = cos(2θ), then find the value of θ between 0 and 90 degrees.