Question
If the area of a triangle is 1125 cm2 and
base: corresponding altitude is 2:5, then the altitude of the triangle is:Solution
Using the formula, Area of the triangle = 1/2 x base x height Let the base and altitude be 2x and 5x respectively. According to question, ⇒ 1/2 x base × altitude = 1125 cm2 or, ⇒ 1/2 x (2x) x (5x) = 1125 ⇒ 10x2 = 2250 ⇒ x2 = 2250/10 ⇒ x2 = 225 ⇒ x = √225 ⇒ x = 15 cm Altitude of a triangle = 5x = 5 × 15 cm = 75 cm

If sin 2A = cos (3A - 60o) , then find the value of sec 2A.
- If 2 sin x = √3, then the value of x:
- Find the value of sin²33° + sin²57° + cos²48° + cos²42°.
If sec a + tan a = 5/2, find the value of sin a.
If 2 sec 3x = 4, then the value of x:
Find the maximum value of 22 sin A + 16 cos A.
- If cos A = √3/2, then what will be the value of tan² A?